@ Centrum voor Wiskunde en Informatica

Building documentation generators
A. van Deursen, T. Kuipers
Software Engineering (SEN)

SEN-R9916 June 30, 1999

www.manharaa.com

Report SEN-R9916
ISSN 1386-369X

Cwi

P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.

SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

www.manharaa.com

Building Documentation Generators

Arie van Deursen and Tobias Kuipers
http://www.cwi.nl/™ {arie,kuiperg/
{arie,kuipers@cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

In order to maintain the consistency between sources and documentation, while at the same time providing doc-
umentation at the design level, it is necessary to generate documentation from sources in such a way that it can
be integrated with hand-written documentation. In order to simplify the construction of documentation genera-
tors, we introduce island grammarswhich only define those syntactic structures needed for (re)documentation
purposes. We explain how they can be used to obtain various forms of documentation, such as data dependency
diagrams for mainframe batch jobs. Moreover, we discuss how the derived information can be made available
via a hypertext structure. We conclude with an industrial case study in which a 600,000 LOC COBOL legacy
system is redocumented using the techniques presented in the paper.

1991 ACM Computing Classification System: D.2.2, D.2.5, D.2.7, D.3.4

Keywords and Phrases: Redocumentation, legacy systems, documentation generation, source code analysis,
island grammars

Note: Work carried out under projects SEN1.1, Software Renovation, and SEN1.5, Domain Specific Languages.
This report will appear in the Proceedings of the International Conference on Software Maintenance 1999
(1ICSM'99).

1. INTRODUCTION

The documentation of a system is needed to understand that system at a eeefadhdbstraction, in a limited
amount of time. It is needed, for instance, if a system is migrated or rexe@gid. It can be used to map
functional modification requests as expressed by end users onto technidfitatioth requests, and to estimate
the cost of such modifications. Finally, documentation will help ingtacess of outsourcing maintenance or
when engineers that are new to the system need to learn about the system.

The source code of a system can be viewed as its most detailed level of daatiomerAll information is
there, but usually we do not have enough time to comprehend all thesdetadkily, we do not usually need
to knowall the details. Instead, we would like to have enough informationaowie can build anental model
of the system, andoom into the specific details we are interested in. The level of detail (or abstretie are
interested in depends very much on what we intend to do with the system.

This flexibility should be reflected in the documentation, which, treesfshould adhere to four criteria:

1. Documentation should be available on different levels of abstraction

2. Documentation users must be able to move smoothly from one Ieadistraction to another, without
loosing their position in the documentation (zooming in or zoonaay).

3. The different levels of abstraction must be meaningful for the tedrdocumentation users.
4. The documentation needs to be consistent with the source code ateall tim

Unfortunately, these criteria are not without problems. Criteriomglies that documentation is generated
from the source code. In practice this is seldomly done. Consequénslyiolated by many legacy systems,
which are modified continuously without updating the accompanying teahtiocumentation.

www.manaraa.com

System
sources
/

Automated fact
extractor
¥

Repository

N
X

~ ~ Manual fact ™ |

\ _ extractor _ v

- == -

—_—_- — — = o

Documentation

Figure 1: Deriving documentation from legacy sources. Solid lind&ate automatic processing, augmented
with manually derived information indicated by dashed lines.

Criterion 3 makes documentation generation hard. Meaningful abstractionsecafit immensely from
design information which is usually not present in the source codH.itSuch information needs to be added
manually to the documentation.

For new systems, mechanisms like literate programming [14] prosydeematic ways of putting design
information in the source code. For legacy systems this wouldwevakignificant manual updating of program
comments. Besides, design information is more often than not losdacy systems.

In this paper, we study ways in which we can update the documentatiogamylsystems such that all four
criteria are met. We propose a combination of manual and automatic (rej@ocation. Whatever documen-
tation can be generated from the sources is derived automatically. This tkemizined with information
provided by hand. Depending on the state of the system, and the krymnddabut the system, either one of
those activities can play the predominant role in the final documentduadrist delivered. Figure 1 shows the
architecture of the documentation generators that are built this way.

The remainder of this paper is organized as follows. In the next sect@imtwoducdsland grammarsthe
technology we use for extracting facts from a system’s source code. lin&8ave discuss what information
should be contained in documentation, and how we can derive it fromdheyesources. In Section 4 we ex-
plain how the information extracted can be presented at what level of absitracsing graph visualization and
hypertext as primary tools. In Section 5 we describe a real-world debaty system, what its documentation
problems were, and how we applied the techniques described in this papdédta bocumentation generator
for that system. We end the paper with related work, a summary of the mairizgions, and suggestions for
future work.

2. SOURCECODE ANALYSIS

In order to generate documentation from a system, we need to analyze the sode of that system. We have
tried several analysis approaches. In this section we will discuss thessaapps in detail. In later sections
we discuss how we have used these approaches.

2.1 Lexical analysis

When generating documentation for a system, only a few constructs sotlree code are of interest. After
all, the documentation should be a useful abstraction of the systemcdrstructs of a language that are of
interest very much depend on the type of documentation that should beagghelf these constructs have
an easily recognizable lexical form, lexical analysis is an efficient way to fiaohthif, for instance, we are
looking for files that are opened for reading in a Cobol source, we sitoplk/for the string “open input” and

www.manaraa.com

take the word directly following that string as the file handle thatlieen opened.

The advantage of this approach is that we do not need to know the futhsghthe language we want to
analyze. Another advantage is that lexical analysis is very efficient. Thissllewo analyze large numbers of
files in a short time, and also allows us to experiment with differencédpatterns: If a pattern does not yield
the correct answer, the analysis can be easily changed and rerun.

The main disadvantage of lexical analysis is that it is (in general) notpmesise, and that some language
constructs are much harder to recognize lexically than others. For examipteefcase study later discussed
in this paper we need to find the files that were executed fromLaprogram, thebec job control language for
VAX VMS. In DCL, we can look for the string “run”, which is thecL keyword for execution. If, on the other
hand, we would want to know which files are executed from a Bourne shiglt,sge would need to specify all
built-in functions of the Bourne shell language. There is no special&ed for execution in the shell, rather,
it attempts to execute all words that are not built-in functions.

Strings such as “open input” and “run” obviously can occur in differentextst and may mean completely
different things in each context. These strings could occur in commerexémple, or inside a quoted string.
Because we need to recognize different contexts in most cases, much of fhalaiigplicity of the lexical
pattern is gone. Furthermore, as long as we do not specify the full sphtalanguage, there is the risk that
we may have overlooked particular contexts in which a pattern can or cannot occu

Most commonly used for lexical analysis are Unix tools sucrasp, awk, andper | . Murphy and Notkin
[17], describeLsME, a system which allows for the lexical specification of contexts of patters well as the
patterns themselves. For the analysis of Cobol, we have devet@gmmalver [8], which keeps track of the
global structure of Cobol, and allows the user to specify patternsallpirequired in a program understanding
context.

2.2 Syntactic Analysis

More precise analysis of source code can be achieved by taking the syntaticre of the code into account,
analyzing the abstract syntax tree instead of the individual source cae This makes the context in which
a particular construct occurs explicitly available. Moreover, it abstraots frrelevant details, such as layout
and indentation.

Unfortunately, most legacy systems are written in languages for whackeps are not readily available.
Developing a grammar from which to generate such a parser requires acsighifivestment. As an example,
Van den Branckt al. [2] report a period of four months needed to develop a fairly completsoCgrammar.

For program understanding and documentation purposes, howevea, bahdful of language constructs are
needed, so it seems too much work to have to specify the full grammar ghayléanguage. Therefore, we
propose the use of “island grammars”, in which certain constructs are parggdtidetail, whereas others are
essentially ignored.

2.3 Island Grammars

Anisland grammar consists of (1) detailed productions for the lange@aggructs we are specifically interested
in (2) liberal productions catching all remaining constructs; and (3yaml set of general definitions covering
the overall structure of a program.

As an example, suppose we have a simple langlilagrograms inL consist of a list of one or more
statements. For documentation generation purposes we are only interestagl statement, the “SELECT”
statement. The definition of the island grammar is in Figure 2. Wehesgtammar definition languag®F2
[20] for our definition! We can distinguish the following groups of productions:

e The definition of the statement of interest is on line (3), defining taement to be produced by the
keywords “SELECT”, a FileHandle, “ASSIGN”", “TO", a FileName, a possiblypty list of Options,

terminated with a “.” character. Productions (4—9) define the details ofttier aon-terminals.

Iplease note that productions $mF2 are reversed with respect to languages kike=. On the left-hand side of the arrow is the
non-terminal symbol that is produced by the symbols on thiet#hand side of the arrow.

www.manaraa.com

syntax
Statt — Program (2.2)
~[\.J+"\." — Stat (2.2)
"SELECT” FileHandle "ASSIGN"
"T0” FileName Optionx ”.” — Stat (2.3)
Name+t ("IS")? Value — Option (2.4)
Id — FileName (2.5)
Id — Name (2.6)
ld — Value (2.7)
Id — FileHandle (2.8)
[A—Z][A—20-9\]x — Id (2.9)
priorities
"SELECT” FileHandle "ASSIGN"
"T0” FileName Optiorx ”.” — Stat >
~[\.]J+"\." — Stat

Figure 2: An example island grammar

e The liberal production catching all remaining constructs is on lined&jined as any character that is
nota“.” (the tilde negates the character class containing the periolbwed by a period.

Obviously, this grammar is ambiguous, because a “SELECT” statement gamdwced by both pro-
ductions (2) and (3). To resolve this, Figure 2 defipeisrities preferring production (2) to (3).

¢ Line (1) defines the overall structure of a program, which is defined &$ aflstatements.

The reason for using this grammar development technique, is that wiicsigtly reduce the grammar
development time. Another advantage is that the parse tree that is retwried parser only contains the
relevantinformation. We do not have to weed through dozens of comgiisatuctures to get to the information
we look for.

By far the biggest advantage is the flexibility of the technique. Alttosome legacy languages have a
proper language definition, we have yet to see a legacy system that daeserammpiler specific extensions,
or locally developed constructs. Furthermore, most parsers for legatgnss are quite liberal in checking
their input, so although a program is not syntactically correct accordirthe language definition, it does
parse, compile, and run. Using our grammar development technique, we canigitbre these specifics (by
writing a catch-all production such as (2) above), or add a production particular to a certi@nsson of the
legacy system at hand.

In principle, island grammars can be used in combination with any parserajenehe best known ones
being Yacc and Bison. We benefited from the usem#2, which has a number of attractive characteristics.

First, SDF2 is based oscannerlesparsing, in which the distinction between lexical scanning and parsing
has disappeared. Hence, the usesbf2 is not restricted to regular expressions for defining lexical tokens.
Moreover, explicit lexical disambiguation is permitted in the forrsali

Second, parsers fagDF2 are implemented usingeneralizedLR parsing [19], which accepts arbitrary
context-free grammars, not just LALR grammars accepted by Yacc and Bisois. a¥bids the notorious
shift reduce conflicts inherent to the use of LALR grammars. A priarigchanism can be used to deal with
ambiguities that may arise due to the use of arbitrary context-freergeam

Last but not least, becauser2 is amodularsyntax definition language, we can specify an island grammar

www.manaraa.com

Level | Documentation |

system | overall purpose, list of subsystems
purpose, list of modules, batch job
databases, screens, ...

programs started, databases accessed,|fre-

o

subsysten

=}

batch job
quency, ...
behavior, programs called, databases read or
program . .
written, invoked by, parameters, ...
. functionality, external calls, sections per-
section

formed, conditions tested, variables used, ...

Figure 3: Cobol system hierarchy, with associated documentation regritem

in different modules. This way, for each analysis we can have a differentngaarnat is an extension of a
common core language. This helps to keep the grammars as small and concisstde.pgosnsider the island
grammar developed above. Here, productions (1), (2), and (5-9) can bedvasbeing part of the core of
languagd.. These can be put in a separate module. Then, the only productions needed f8ELECT”
analysis are productions (3—4), and the priority rule, which shbaldefined in a different module.

2.4 Parse Tree Analysis
The parser generated from the grammar in the previous section will rpause trees that can be easily anal-
ysed. The parse trees are encodedtermformat [1]. This parse tree can be read in by a Java framework
we wrote, thus giving access to the parse tree as a Java object. The frdnmepiements thevisitor design
pattern [11], via a visitor class that can be specialized to perform a patigoblysis on the tree. This is sim-
plified by the fact that the Java framework has full knowledge of ttenggrammar that has been specified,
and contains methods for matching patterns of productions in the grataroamresponding nodes in the tree.

The analysis results that are of interest can be written to a repositarfr@n there they can be combined,
gueried and used in the rest of the documentation generation process.tratitesns described in Section 3
were performed using this Java parse tree analysis framework. Thexdedated were put in a repository. The
presentations described in Section 4 were then generated from that repository

This way of analyzing source code is similar in concept to a number of ofiségras, e.gclA0 [5], in the
sense that there is a chain of analysis, filter, and presentation events.dpgoach, however, we start filtering
the data during the first (analysis) phase, because we only deal with ldraguage constructs defined in the
island grammar.

3. EXTRACTING DOCUMENTATION
In this section, we will discuss the sort of information that skidag contained in software documentation, and
how this information can be identified in the legacy sources.

3.1 Manual versus Automated Extraction

Given the choice between manual or automatic extraction of informatiomgource code automatic extraction
(for example using island grammars) is the preferred option: it isistent with the actual source code, and
can be easily maintained by automatic regeneration.

If generation is not feasible, the facts needed to construct the documeratidie provided by hand. This
may take the form of a list of programs and a one or two line descrigtictheir functionality. Whenever
documentation is generated, data from this list is included as well. Mergantomatic checks as to whether
all programs are indeed contained in the lists can be made whenever documeastagenerated, encourag-
ing programmers to keep the descriptions up to date. The integratioranfial and automated extraction is
illustrated in Figure 1, which also shows how additional forms démally available documentation can be
included in the resulting documentation.

www.manaraa.com

3.2 System Decomposition
We can decompose a large software system into several layers of abstreatiging from individual proce-
dures up to the overall system. At each level, we need documentation, hafptaganswer questions about
the purpose (why?) of a component, the subcomponents it cons{garobdf relationships), the components it
needs to perform its tasks (uses relationships), the way in which inpesfits tasks (how?), the way in which
the component can be activated (usage conditions), the system requirémesponent corresponds to, etc.
The actual splitting in layers of abstraction, and the correspondingwestation requirements, will differ
from system to system. The hierarchy with associated documentationeegurits we use for Cobol systems
is shown in Figure 3.

3.3 Aggregation and Use Relations
The parts-of and uses relationships discussed in the previous seatidre easily derived from the source code.
In general, it is relatively straightforward to extract facts about callsltkte usage, screens used, etc.

A factor complicating this extraction is that many legacy systems usestadard conventions for, e.g.,
calling or database access. We have seen calling conventions in which all callediezeted via an assembly
utility, and database access conventions hiding all SQL operations vianaGebol modules. The flexibility
of island parsing makes it particularly easy to tailor the extractorsab sanventions.

3.4 System and Subsystem Partitioning

At the system level, the directory structure of program files or theingroonventions used usually provide
a candidate partitioning into subsystems. If these are absent, or pEf@svinadequate, we use automatic
subsystem classification techniques to arrive at a better partitioning®]15Such alternatives can then be
added to the documentation, helping the user to see component relatibds thot immediately follow from
the actual partitioning.

In addition to the decomposition of the overall system, short desanip of the individual subsystems as
well as of the overall behavior are needed in the documentation. In many casle$op level documentation
may already be available, in which case it can be included in the documentatienatien process. If it is not,

a description of the various subsystems should be added by hand.

3.5 Program Descriptions

In many systems, coding standards are such that each program or batch plwvitaetcomment prologue
explaining the purpose of this component, and its interaction witlerocomponents. If available, such a
comment prologue is a very useful documentation ingredient which can bmatitally extracted from the
source. Observe that it is generaligta good idea to extraetl comment lines from a program’s source into its
documentation: many comment lines are tightly connected to specific stateamahtaeaningless in isolation.
Moreover, in many cases obsolete pieces of code have been “commented out”, whigtsbleald not appear
in system documentation.

3.6 Section Descriptions

For the sections (local procedures) of a Cobol program, it is usuatlasi@asy to extract a description as it
is for Cobol programs starting with a comment prologue. On thetpesside, however, section names are
generally descriptive and meaningful, explaining the purpose ofeéhtom. This is unlike Coboprogram
names, which generally have a letter/number combination as name indicdiiicly subsystem it is part of, not
what its purpose is.

Since we encountered an actual need for the documentation of sections thatecdoofsimore than just the
name, but at the same time was more abstract than simply the complete codeceve decided to search for
ways in which to select the essential statements from a section. In ternestbitbry of program comprehen-
sion as proposed by Brooks [3], we try to select those statements thattea@mdor certain understanding
tasks, such as finding out under what condition a certain piece of code gsdainuted.

Statements we include in such section descriptions areahditionschecked in control statements, calls to
external programs, database access operations, calls to other sections, ssatentaming arithmetic compu-

www.manaraa.com

PVP400101IN1.DA
[PVP400401BS.COB]
PVMA00701SL.DA ~ CPVMA400501SL.DA
[PVP500101BS.COB] PVP550401SL.COB| PVP500102BS.COB]
/ \ \ \
/ \ \
/ | \
\
\
\
\

PVM400406PR_ZO.DA

PVM400406PR_G.DAT
PVMA400406PR W.DAT |
PVM400406PR_T.DAT

PVMA400406PR_NO.DAT, ‘

PVP500101XX.COB | PVP550406GN. COB‘ PVP550404GN. COB‘ PVP550409GN.COB

\
\

PVP550401SL.DA

UNRESOLVED: TE_HERSTELLEN_GEG>

PVP550408GN.COB
I

\ \

\ |
\ \ \
\ AN ‘w‘
PVP550406GN.DAT> (PVP550404GN.DATS |
|
|
|
|
|

PVMS00901GN.DAT
PVMS00801GN.DAT
PVM500701GN.DAT
PVMS500401GN2.DAT
PVM500401GN1.DAT
PVMS00501GN.DAT
PVM500301GN1.DAT
PVMS501201GN.DAT

UNRESOLVED: HERSTELDE_GEG>

B|
PVM550103PR DA
PVM550102PR.DAT,

Figure 4: An example of the visualization of data dependencie®inLgob

tations, and comment lines. This explicitly excludes the frequentlyroicciMOVE statement, which in Cobol
is an assignment from one variable to another. As it does nothing “ititeg&éno computation) leaving it out
of the documentation directs the reader’s attention to those statemant®therform some task of interest.

Following this strategy, the length of a summarized section is abmaithird of the length of its full source
code. To make the summary as comprehensible as possible, we reuse indesfttte original source code,
giving the reader a sense of the nesting level.

3.7 Batch Job Dependencies

For a Cobol mainframe application, the batch jobs determine which pnegjare started every day or night,
and how datafiles used for communication purposes are sorted, renamed, edtyylnases, the batch jobs are
the least understood components of a Cobol system, in spite of tingriance for the daily data processing.
Documentation should help in understanding such batch jobs. We hpedreented with visualizing the data
dependencies in such batch jobs.

Finding the data dependencies for a batch job is a three step processweirdentify the Cobol programs
executed in a batch job. Second, we analyze these Cobol programs, detgmwitiich data files are read and
which ones are written. Third, we return to the batch files, to see whéetheetdata files occur in them, for
example for sorting or renaming.

Recognizing these dependencies involves two island grammars: one fobtberjtrol language, finding the
execution, sort and renaming statements, and one for Cobol, idegtifyéndata file manipulation statements.

Once the data dependencies are found, they can be visualized. The visualifa@ioexample batch job is
shown in Figure 4. The resulting graph only shows the functioepktidencies: Dynamic dependencies, such
as the order of execution, are not explicitly visible. Also obsena ith some cases, it will be impossible to
determine the name of a data file, because it is determined at run time. Spefgalindhe graph are used to
mark such file names.

4. PRESENTINGDOCUMENTATION

Once we have decided which information to put into the documentatiercam decide how tpresentthat
information to the user. Hypertext has been proposed as a natural wagsafnping software documentation
[4, 18] as the hyperlinks can be used to represent, for example, part ofandalationships between between

www.manaraa.com

the documented components.

The most natural way of organizing all the information derived is ttfeithe system hierarchy, producing
essentially one page per component. For Cobol this would result in gagesponding to the full system,
subsystems, programs, batch jobs, and sections, following the desdiap of Figure 3.

If a user knows what programs he wants to read about, finding an initibd testart browsing is simple.
In many cases, however, there may not be such a straightforward stastinig pherefore, we provide various
indexes with entry points to the hypertext nodes, such as:

¢ Alphabetic index of program names;
e Keyword search on documentation contents;

e Graphs representing use relationships. In particular, navigatimgighra call graph may help to find
execution starting points or modules frequently used. We have useptdaph drawing packagiot [12]
to integrate clickable image maps for various call graphs and data-deperglaptys into generated
documentation. In order to prevent visual cluttering of graphs, we lagypliednode concentrationn
them, as can be seen in Figure 4.

e Hand-written index files, establishing links between requirements amdegode elements.

Many presentation issues are not specific to software documentation.iyaistandard format such as
HTML, the generated documentation can benefit from various future develugraf the Web, such as search
engines, page clustering based on lexical affinity, link generation fratnabdocumentation files, the use of
XML to establish a better separation content from presentation, etc.

5. BUSINESSCASE
We have used all the techniques and ideas discussed in this paper in a comprejeéilaiming at redocu-
menting a Cobol legacy system. In this section, we describe our §adin

5.1 Background

PensionFunds a system for keeping track of pension rights of a specific group oflpéophe Netherlands.
It consists of approximately 500 Cobol programs, 500 copybooks18AdEC DCL batch jobs, totaling over
600,000 lines of code. The main tasks of the system are processingipeastdbutions and pension claims.

Several years after the initial delivery, the organization responsiblegnsionFundlecided to outsource all
maintenance activities to a division of Dutch software house ®DE, specializing in software management
and maintenance. In order to make a realistic estimate of the anticipated naaicgerosts involved before
accepting maintenance commitment®d€ADE performed asystem scaim which a number of key factors
affecting maintainability are estimated.

One of the outcomes of the scan was that the documentatidPefsionFundvas not adequate. In fact,
documentation was not kept up to date: for example, although in 1998 berwwhmajorPensionFundnod-
ifications were implemented, the documentation was never updated accordifegly little documentation
maintenance had been performed, although the need for documentation greweamchaore programmers
who had participated in the original designRegnsionFundnoved to other projects.

The lack of proper documentation resulted in:

e A growing backlog of major and urgent modification requests, which by d®99 had risen to 12.

e Difficulty in carrying out adequate year 2000 tests, since the documemtitianot help to identify the
sources of errors encountered during testing.

¢ Difficulty in mapping modification requests, phrased in terms of desirectionalitymodifications, onto
changes to be made in actual programs.

¢ Difficulty in splitting the large number of daily batch jobs into dieis that could be run independently
and in parallel, which was becoming necessary as the increasing number andisé&zkaith jobs caused
the required daily compute time to grow towards the upper limit oh@drs.

www.manaraa.com

5.2 Documentation Wishes
To remedy thes@ensionFungroblems, a redocumentation project was planned. The plan was to compose a
number of MS-Word documents, one per program, containing:

e A short description

Calls made (from other Cobol programs or batch jobs) to this progaachcalls made from this program;

Database entities as well as flat files read and written;

Dataflow diagram;

Description of functionality in pseudo-code.

Apart from the per program documentation, per batch file one dataflow chaplamsed for. Management
was willing to make a significant investment to realize this documentation

Initially, the idea was to write this documentation by hand. This I@sadvantage that documentation
writers can take advantage of their domain or system knowledge in ordeotidp the most meaningful
documentation. Unfortunately, hand-written documentation is veryycast error prone. Because it is not a
job many people like to do, it is difficult to find skilled documentatisriters.

Therefore, it was decided to try generatehe documentation automatically. This has the advantages that
it is cheap (the tools do the job), accurate, complete, and repeatable. If necgsgasyargued, it could be
extended with manually derived additional information.

5.3 Derived Documentation

The contents requirements of tRensionFundlocumentation corresponds to the wishes discussed the previous
section. The specific information derived per program is shown in Ei§uArriving at this list and determin-

ing the most desirable way of presentation was an interactive processjdh algroup of fivePensionFund
maintenance programmers was involved.

The fact extraction phase mainly involved finding the structure of RERRW, CALL, and database access
statements, and was implemented using island parsing. For those extistetds for which a line by line scan
was sufficient (for example, Cobol comment extraction), or for the orféshwequired the original layout and
indentation (summarizing sections) lexical analysis was implemented Bsirh.

The result of the fact extraction was a set of relations, which were comimt@the required relations per
program using Unix utilities such as join and AWK. The final produttidd HTML code from the resulting
relation files was written using Perl.

All the documentation per program could be generated automatically. Evéinettieo-line description per
program could be generated, as this was an easily recognizable part of thguerclamment. Had this not
been the case, this would have required a manual step. As top level indicgsveraited alphabetic lists, lists
per subsystem, and clickable call graphs. Moreover, we composed one iadeally, grouping the programs
based on their functionality.

As a separate top level view, we used the data dependency visualizatioermeddrom the batch files.
For eactpcL file, we used the techniques described in Section 2 to find all Cobol proghatare executed.
We then analyzed these Cobol programs to find the data files they read amdowtitsing static analysis it is
impossible to find all the data file names, because, in this system, demarfies were obtained dynamically.
This occurs especially in error conditions, where the name of the filerite Whe error data to is somehow
related to the kind of error. The files we could not find names for are osinall fraction of all data files.

In order to visualize these unnamed files at a later stage, we introduced sgeniinies for these files. In
Figure 4 these unresolved filenames can be seen on the left side, and are clekely. tharresolved”.

The list of data files was then matched againsttibe files again, to see whether the data was manipulated
there. In thePensionFundystem, we looked at theor t statement, which takes one file and a number of sort
parameters, and writes to a different file. They are visualized as diamortusfigtre.

An example browsing session trough the generated documentationns ghéigure 6. A typical session
would be a maintenance programmer trying to find out why a particular falictid not work as expected.

www.manaraa.com

10

Header | Content |
Summary | Name, lines of code, two-line description
Activation | Batch jobs or Cobol programs called by
ParametersList of formal parameters

Data Databases and flat files read or written
Screens | List of screens sent or received
Calls Modules and utilities called

Overview | Clickable conditional perform graph
Sections | Clickable outline for each section

Figure 5: Contents of the HTML document derived for eRelmsionFungrogram.

o] ptsc oct ie voor het PRIS Systeem [x]
File Edit WView Go Communicator =] scape: Perform-athankelijkh voor PYM500501GN [x
. File Edit ‘iew Go Communicator Help

Documentatie voor het PRIS Sys{=====r= -

=

Dit is de hoofdindex van de voor PRIS gegenerserde documentatie:
:EI| Hetscape: Documentatie voor PYP400402BS | x

Edit View Go Communicator Help >/

st

P P4604021 Samenvatting A

FRISbq Besturingsprogramma t.b.v. het selecteren van
Documentatie premieplichtige werkgevers en de bij een

O geselecteerde werkgever behorende werknemers
E s Samenvatting welke in aanmerking komen voor een individuele
i

O

O

VERMERK-$Y-LONEN SCHRIJ

s Activering vaststelling nota in de opgegeven periode.
* Entiteiten

R2168- R2586-
BEREKEN-PER-DEELPERIODE AFKAPPEN-SY-LOON cun
® Schermen

¥
- 1
® Perform-afhy e

ijui ECTLION. -
@ Beschrijvis T
« Source Entiteiten

code litialisatie, E = Bereken, Z = schrijven uitvoer rec
{OGFD [OGPD SN 2001

Conditionele WL W BN 1003
perfortn graaf i e T T -
POPG POPG KM 1002 LT I

i p | PERFORM R1000-BEGCTN-MODULE
Yolledige NOPG VOPG SN 1001, VOPG UN 2001
gource 5 2 Fl "B
PERFORM R2Z000-VERWERE-SV-LONEN

® Begtanden

* Aangeroepen . R
modules Activering
= « Aangeroepen
: utilitie * DPVCA004024 (batch)

& Parameters

=i

[TE Ls_ACTIE &

Hoofdindex
by g
Bestanden PERFORM R3000-SCHRIIF-PREMIE-LOON

¥

PVL_DATPVMA00406PR_G.LIS OUTPUT - ! =
= E ; 3 i g Ew AP 2
T = =] ‘

= =
-+ I IEF T
‘ .

Figure 6: Browsing through the documentation generate@émsionFund

He starts browsing the visualization of the data dependencies in thejbbtdiollows the links to a specific
program, reads the purpose of that program, searches the perform graglef@ant sections, ending in the
section responsible for the incorrect system behavior.

5.4 Evaluation

As we have demonstrated in the previous section, the documentatierag@mwe have built foPensionFund
exactly fulfills the wishes th&ensionFuncwners had. Furthermore, the documentation that is generated
adheres to the four criteria mentioned in first section of this paper. @oedpto the initial plan of manually

www.manaraa.com

11

deriving all documentation, significant cost savings were achieved byogimgldocumentation generators,
even if the time needed for configuring the documentation generatoris tao account.

A question of interest is whether this approach is applicable to othenfexygtems as well. Our approach
takes thegood properties of a system in to account. RensionFundthese are the systematic coding style
which meant that certain properties (such as program descriptions) wereadig@iy derivable from the
source. Furthermore, the programs were relatively short, which made ahsatural starting point for doc-
umentation generation. Another result is that the (conditional) parfimaphs are not too big, making them
easily comprehensible. Finally, the fact that the sections were relatively stade the section summaries
feasible.

Although other systems may not share the desirable propertigsrsionFundthey usually have some of
these and possibly other strong points. Apart from the program igéser, all other documentation can be
generated for any (Cobol) system. Program descriptions could then be agltiedd once, such that subse-
guent generation steps have this information available. It is partrdfitwre work to see how the generation of
the documentation as described here is useful in other systems. We mayfdedaitfer systems, that certain
levels of documentation are of no use, and new ones are more natural.

We believe the techniques described in this paper are flexible enough tie esab build different types of
documentation generators for different types of systems rather easily.

6. CONCLUDING REMARKS

Related Work Chikofski and Cross defineedocumentatioas the creation of a semantically equivalent rep-
resentation of a software system within the same level of abstractiomn@n tools include pretty printers,
diagram generators, and cross-reference listing generators [6]. Lehdis discuss various documentation
methodologies, such as Nassi Schneiderman charts, flow charts and Jacksemsl{dgi.

Wonget al. emphasizetructuralredocumentation, which, as opposed to documentatidine-small deals
with understanding architectural aspects of software. They use Rididanttraction, querying, and presenta-
tion, using agraph editorfor manipulating program representations. Sevei@lvsof the legacy system can be
browsed using the editor. Our approach also focuses on the structueatas documentation. Rather than
using a dedicated graph editor, we use standard HTML browsers fomgettve documentation. We determine
the required views in advance, via discussion with the team of mainteneog@mmers.

The software bookshelf [10] is an IBM initiative building uporetiRigi experience. In the bookshelf
metaphor, three roles are distinguished: thédder constructs (extraction) tools; thierarian populates repos-
itory with meaningful information using the building tools ather (manual) ways, and ttgatronis the end
user of the bookshelf. For the building phase, the parsing is likastand approach, in that only constructs
of interest are recognized. The parsers are written in Emacs macros, witingtan explicit grammar. The
parsing code directly emits the HTML code.

Several papers report on the use of hypertext for the purpose of cnting software [4, 18, 7]. Of these, [7]
follows theliterate programming14] approach as also used in, for example, Javadoc, enabling the programmer
to control the generation of HTML by manually adding dedicated comment tags.

The need for flexible source code extraction tools was also recognizedrgxdample, LSME [17], as
discussed in Section 2.1. Another approach of interest is TAWK [13]¢chvhises an AWK like language to
match abstract syntax trees.

Contributions In this paper, we have described our contributions to the field of deotation generation.
Specific to our approach are:

e The systematic integration of manual documentation writing withraated documentation generation
in a redocumentation setting.

e The integration of different levels of documentation abstractness henshtooth transition between the
different levels of documentation.

e Theisland grammar approach to software fact extraction

www.manaraa.com

12

e A method for building documentation generators for systems in theQimain.
e The automatic visualization of data-dependencies in mainframe batch jobs.
e The application of the contributions listed above in a commercial enmient.

We have shown how we can build documentation generators which adheretsatie first three criteria
from the introduction. The fourth criterion (documentation needsdaonsistent with the source code) can
only be achieved by eliminating the need for manual documentation. By odmybautomatically derived
documentation and manually derived documentation, and by keeping thefonplug two well separated, our
documentation generators only need little human input to adhere to attficeria.

Future Work At the time of writing, we are finalizing th@ensionFundctase study. Moreover, we are in
the process of initiating other commercial redocumentation projects, w¥ilchelp us to identify additional
documentation needs and new ways of presenting the data extracted framtbess

On the extraction side, we plan to elaborate the ideas underlying istanthgars. In particular, we will take
a close look at the best way of expressing the required analysis of ttracttsyntax tree.

Acknowledgments We would like to thank Lars van Dinter from Roccade Finance for his roth@Pension-
Fundcase study, and for many pleasant discussions.

www.manaraa.com

10.

11.

12.

13

References

M. G. J. van den Brand, P. Klint, and C. Verhoef. Core technologiesystem renovation. In K.G.
Jeffery, J. Kral, and M. Bartosek, editoSOFSEM’96: Theory and Practice of Informatieslume 1175
of LNCS pages 235-255. Springer-Verlag, 1996.

M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. ObtaininglaoCgrammmar from legacy code
for reengineering purposes. Rroceedings of the 2nd international workshop on the theory anctice
of algebraic specification&lectronic workshops in computing. Springer Verlag, 1997.

R. Brooks. Towards a theory of the comprehension of computer amogyint. Journal of Man-Machine
Studies18:543-554, 1983.

P. Brown. Integrated hypertext and program understanding ttBM. Systems JournaB0(3):363—392,
1991.

Y.-F. Chen, G. S. Fowler, E. Koutsofios, and R. S. Wallach. Ciao:aflgcal navigator for software and
document repositories. In G. Caldiera and K. Bennett, ediborsConf. on Software Maintenance; ICSM
95, pages 66—75. IEEE Computer Society, 1995.

E. J. Chikofsky and J. H. Cross. Reverse engineering and desigrergcévtaxonomy.|lEEE Software
7(1):13-17, 1990.

Ch. de Oliveira Braga, A. von Staa, and J. C. S. do Prado Leite. DocumArtaxible architecture
for documentation production based on a reverse-engineering strdtagyal of Software Maintenance
10:279-303, 1998.

A. van Deursen and T. Kuipers. Rapid system understanding: Two CQR6x studies. In S. Tilley and
G. Visaggio, editorsSixth International Workshop on Program Comprehension; IWP¥@&es 90-98.
IEEE Computer Society, 1998.

A.van Deursen and T. Kuipers. Identifying objects using cluster anceptanalysis. I21st International
Conference on Software Engineering, ICSE{#8ges 246-255. ACM, 1999.

P. J. Finnigan, R. C. Holt, |. Kalas, S. Kerr, K.Kontogiannis, A4 Muller, J. Mylopoulos, and S. G.
Perelgut. The software bookshelBM Systems JournaB6(4):564-593, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissibesign Patterns: Elements of Reusable Object-Oriented
Software Addison-Wesley, 1994.

E. R. Gansner, E. Koutsofios, S. North, and K-P. Vo. A techniquérawing directed graphslEEE
Transactions on Software Engineerjid(3):214-230, 1993.

www.manaraa.com

14

13

14.
15.

16.

17.

18.

19.

20

References

. W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexigjatactic pattern matching and processing.
In Fourth Workshop on Program Comprehension; IWPC®EE Computer Society, 1996.

D.E. Knuth. Literate programmin@he Computer Journal7(2):97-111, 1984.

A. Lakhotia. A unified framework for expressing software suteysclassification techniquedournal of
Systems and Softwaggages 211-231, March 1997.

L. D. Landis, P. M. Hyland, A. L. Gilbert, and A. J. Fine. Documeintain a software maintenance
environment. IrProc. Conference on Software Maintenajjgages 66—73. IEEE Computer Society, 1988.

G. C. Murphy and D. Notkin. Lightweight lexical source modetagtion. ACM Transactions on Software
Engineering Methodolog¥(3):262—292, 1996.

Vaclav Rajlich. Incremental redocumentation with hypertextldhEuromicro Working Conference on
Software Maintenance and Reengineering CSMRBEFE Computer Society Press, 1997.

E. Visser. Scannerless Generalized-LR Parsing. Technical Report P9 #¢arsity1 of Amsterdam, Pro-
gramming Research Group, 1997.

. E. Visser.Syntax Definition for Language PrototypinghD thesis, University of Amsterdam, 1997.

www.manaraa.com

